Monday, July 30, 2012

How Woody Guthrie won the war

I teach at a liberal arts college, and I really do believe in the liberal arts ideal. That is, a well rounded education includes an understanding of all different areas of scholarship. No subject can be treated in isolation. For instance, take something as simple as stopping at a McDonalds to buy a burger. This touches on health, which includes biology and biochemistry, to really understand what that burger is doing in your body. It also relates to economics, how large franchises such as this affect our economy. Environmental and ethical concerns can be addressed in how the food was raised to make that burger. History and sociology come in when you look at how the fast food industry helped drive (pun intended) the car culture of America. Psychology can look into how advertising helps mold the decisions we make. And that's just lunch. As you move through the day, all of the different academic pursuits give insight into everything you do.

So why bring this up in the present context? I love teaching my students about the applications of oxidation/reduction chemistry. This refers to chemical transformations that involve moving around electrons. For instance this tells us how batteries work to produce a flow of electrons. In an electrolytic cell, a flow of electrons is used to drive some chemical reaction. One example of this is the smelting of aluminum. Aluminum ore exists as an oxide, Al2O3. In this compound, aluminum has a charge of +3. On the other hand, pure aluminum metal has a charge of 0. How do you go from +3 to 0? You add three negatively charged electrons. For some LEGO, here are aluminum bricks by Bram Lambrecht (and, yes, they do fit together with real LEGO bricks).

This process of producing pure aluminum metal, though, requires a lot of electricity. This brings us to the 1920's and 30's. The Army Corp of Engineers and Bureau of Land Reclamation were in the process of building a large number of dams as public works projects. This was in large part driven by FDR and the desire to create jobs during the Great Depression. One proposed dam was the Grand Coulee Dam on the Columbia River. Here's a song commissioned by Woody Guthrie to help promote federal dam projects and the BPA:

Dams could be justified economically by their ability to provide water for drinking and irrigation and also electricity. The problem was, at the time there was not a large enough population in the Pacific northwest to really require as much electricity as would be generated by this new hydroelectric dam. Here's a MOC of the Pitlochry Power Station in Scotland by Bricklove (I could swear I've seen a microscale version of the Grand Coulee Dam before, but now I can't find it, so this will do).

This opened the door to create new customers, including aluminum smelters. And what industry (aside from soda cans) most needed that aluminum? The then-growing aeronautics industry, of course. What major company is based in Seattle? Okay, yes, Starbucks, but also Boeing. There's a reason that they are based there - that's where the power and aluminum was. This growing productive capacity in the late 30's was key to the US war effort in the following decade. Quite frankly, the Axis had the rest of us on the ropes in the early years of WWII, aside from the heroic defense of Britain and the snows of Russia. But the US was relatively safe behind two oceans, and the industrial capacity fueled, in part, by hydroelectric power, helped create the weapons to beat back the forces of Germany and Japan. Here are MOCs of two of the Boeing planes that were so important in WWII, the B-17 Flying Fortress B-29 Superfortress by Orion Pax and Junlego, respectively. The B-17 was key in defeating the Germans, and the B-29 helped end the war over Japan.

There you have it, how Arlo Guthrie won the war. With a little help from electrochemistry and hydroelectric power.

Thursday, July 26, 2012

Hydroelectric dam

Most electricity generation comes from heating water to make steam which turns a turbine. In the US this heat is mostly from the burning fossil of fuels (69% of electricity generation) and secondarily from nuclear fission (20%) (2009 statistics). In France, nuclear energy forms the bulk of electricity generation (78%) (2006 data). The next most important form of electricity generation is hydroelectric power (7% in the US, 11% in France).

The basic idea goes back two thousand years - using the movement of water to turn a wheel and then putting that turning to some use like grinding grain or sawing lumber. Here's a grain mill by Jojo.

Dams improve the efficiency of using water power. They do this in two ways. First, by storing up water they help even out the flow during rainy versus dry seasons. Also, by funneling the flow of water through a much narrower opening, they result in a much faster flow past the water wheel. Dams have other benefits, such as controlling flooding, acting as a reservoir for drinking or irrigation water, and even providing for recreational use. They also have downsides, in that they have a large impact on river ecosystems, for instance interfering with the migratory patterns of salmon or flooding areas (e.g. Hetch Hetchy Valley). Also, over time, dams can clog up with silt, either leading to their loss of usefulness or the need for difficult dredging programs. Here's a hydroelectric dam by Paul Janssen.

In a hydroelectric dam, the water is sent through a large pipe called the penstock, and it goes rushing through the turbines, which spin to generate electricity. Here's a power station by Peachtree.

Here's a clever ad for LEGO.

Tuesday, July 24, 2012

Two famous women

I'll get back to energy tomorrow, but I wanted to pause to remember Sally Ride, who passed away yesterday after a battle with pancreatic cancer. In 1983 she made history as the first American woman in space aboard the Space Shuttle Challenger. She served other roles in the Shuttle program, including working in communications for other flights, helping to develop the Shuttle's robotic arm, going into space again on a subsequent mission, and, sadly, as part of the presidential commission to investigate the 1986 Challenger explosion. Among her roles after NASA she was a professor of physics and president and CEO of Sally Ride Science, a company she founded to promote science education among grade schoolers. Here she is in LEGO by Pixbymaia.

In a coincidence of timing, when I went to the computer to post this, today's Google doodle celebrates another important woman in aerospace history, Amelia Earhart, as today is the 115th anniversary of her birth. Earhart made history as the first woman to make a solo flight across the Atlantic, along with many other aviation records. She was also active in promoting women in aviation careers, and a supporter of women's rights in general. She disappeared along with navigator Fred Noonan in 1937 in the Pacific Ocean during an attempt to fly around the globe, and her body has never been found (leading to all kinds of different conspiracy theories). In fact, also in the news today is the cancellation of a search for the wreckage of her plane. Here is a LEGO form of Earhart by Fede1845.

Monday, July 23, 2012

Heliostat power plant

The next entry in our ongoing energy series uses a unique method to heat water (to make steam to turn turbines to generate electricity). Have you ever seen a solar oven? This is essentially a mirror-lined box that reflects the sun's rays onto a central point, where you can cook a hotdog or something. The Planta Solar 10 was the world's first commercial power plant working on the same system, going on line near Seville, Spain, in 2006. An array of movable mirrors are rotated to reflect the sun's rays onto the central tower, where this heats the water to ultimately make electricity. This is different from most solar power, which works on a completely different principle, which I'll get to in a subsequent post. Here are LEGO versions of the PS10 plant by mtrkustoms Alex Fojtik. Mtrkustoms' creation is actually what inspired this whole series on energy.

Thursday, July 19, 2012

Attack of the radioactive B-movie monsters

Despite the seriousness of nuclear disasters, it's hard not to have a little bit of morbid humor about the subject. Perhaps the most famous version is Blinky, the three eyed fish from a Simpsons episode, here in LEGO by car_mp.

Monsterbrick's Two heads are better than one.

Jerrec's Oops.

All fun aside, the nuclear disasters have had a huge impact on public perception of nuclear energy. Germany has decided to phase out nuclear power altogether, and even in France, which has relied largely upon nuclear plants, there is a growing move to prefer other power sources. However, as horrible as the two serious incidents were, there are estimates that coal causes about 1000 deaths for every 1 death due to nuclear energy. This includes things like black lung disease, mine collapses, etc, and doesn't even consider the long term impact of coal on the environment including the release of carbon dioxide, acid rain, and the runoff from mining. Now, some may argue that that is all an argument that we shouldn't have either coal or nuclear, but instead should depend on things like wind, solar and hydroelectric. All well and good, but could those provide enough energy to maintain our western lifestyle? Not to mention allow those in developing nations to get to a modern lifestyle? Every time there is a major power outage, there are reports of deaths due to people losing their air conditioning or heat. Also think about medicine. Without modern hospitals, which use power, my daughter would have died at birth due to complications, and possibly my wife as well. My sister would have died last year due to her cancer. My father probably would have died due to complications of his heart condition, and I'm sure there's no way my grandfather would still be alive in his 90's. And that's just my immediate family. So when we say 'maintain our western lifestyle', it's not just about having big screen TVs and iPhones. The lack of electricity would cause many more deaths than these various ways of making electricity. So until we can all make unlimited power from dilithium crystals, we're stuck with having to weigh our different options. I'd say that, despite the big headlines of Chernobyl and Fukushima, nuclear power is going to have to remain a piece of our energy puzzle for many years to come.

Okay, off my soapbox. Tomorrow I'll get to some of these other alternative ways of making electricity.

Wednesday, July 18, 2012


In the most frightening nuclear incident since Chernobyl, last year the Tōhoku earthquake and tsunami caused great damage to the Fukushima nuclear plant in Japan. Three of the reactors were in shutdown at the time of the tsunami, and the other three went into automatic shutdown when the wave hit. Seawater flooded the emergency generators, stopping power to the pumps that were cooling down the three hot reactor cores. This led to those cores going into meltdown, with release of radioactive material into the surrounding environment. No one was directly killed by radiation, though six workers received massive doses and three hundred more had significant exposure. It is estimated that anywhere between 0 and 1000 deaths may be attributed in the future to cancers related to the radiation.

LiLi built this rendition of the Fukushima disaster.

Kenneth the Legoman made this tribute to the brave disaster workers that entered the plant to cool down and contain the radioactive cores.

Tuesday, July 17, 2012


Yesterday I noted that a nuclear power plant involved a controlled nuclear chain reaction. If something goes wrong, the reaction could run out of control with a great release of energy and/or radioactive material into the surrounding area. This came to public awareness in 1979 with the Three Mile Island accident. This plant in Pennsylvania had a stuck valve that led to a loss of coolant. The reactor core heated up and in the process some radioactive material was released. No serious heath effects came from this accident, though there was a huge public panic and outcry, perhaps in part due to the movie the China Syndrome which came out around the same time.

Seven years later was a much more serious nuclear event, the Chernobyl disaster. A sudden power spike in one of the reactor cores led to an explosion, spewing radioactive material into the environment. Some of this material spread over much of Europe. 28 or 31 people were killed directly by acute radiation poisoning, with another 200 or so suffering from radiation sickness. Long term effect include a rise in the incidence of thyroid cancer, with thousands affected - perhaps up to 9000 deaths will result from this over time. There was also a huge financial impact due to the cost of the cleanup, the destruction of contaminated and potentially contaminated food, and the cordoning off of a large section of land in what is now the Ukraine, including the city of Pripyat, which is now a ghost town.

Jonah Day illustrated the explosion.

Eric Constantineau illustrated the control room.

Others focused on the aftermath in the city of Prypiat, such as Juliandrius,


and Eturior.

Sealclubber actually recently visited Chernobyl, with LEGO in hand.

Monday, July 16, 2012

Nuclear power

Continuing on with our series on energy, a nuclear power plant also involves heating up water to make steam to drive turbines to make electricity. The difference here is that the heat energy comes from a nuclear chain reaction. As one unstable nucleus undergoes fission, i.e. breaks apart, it spits out subatomic particles that crash into other nuclei. These break apart and spit out more particles, that hit even more nuclei, etc etc etc. Each step of this process produces energy. If this is controlled it is a power plant, if uncontrolled it is an atomic bomb. A BrickCon 2009 attendee built this nuclear power plant. The reactor core is in the bottom left, driving a turbine in the bottom right. He should have included a little Homer Simpson fig in the control room in the upper left. I'm guessing the upper right is a cooling tower.

Friday, July 6, 2012

Fossil Fuels

Okay, I've let this slide, but I want to spend a few posts talking about energy. I noted a few days back that the bulk of electricity generation involves the heating of water to make steam, which then drives turbines. In most countries water is heated by the burning of fossil fuels (in the US this accounts for about 70% of electricity generation) such as coal. About 300 million years ago, dense forests got slowly buried underground. The process of time and pressure transformed this plant matter into what we know today as coal, so this is essentially stored and concentrated solar energy, from the ancient photosynthesis of those plants. Today we dig up this coal (here's an excellent Marion 182m Shovel used in coal mining by Redjack Ryan),

transport it, usually by train (coal car by Monteur),

and then burn the coal in a plant such as the Kingsnorth Power Station (here from Legoland Windsor).

BTW, the real Kingsnorth plant has been the site of several high profile protests by environmental activists. It seems that tiny little ABS activists have also been to Windsor:

Monday, July 2, 2012

Higgs boson

The rumor is that scientists at CERN are about to announce the discovery of the Higgs boson. Here's a good description of the search for this particle by Jorge Chan of Piled Higher and Deeper (a comic I highly recommend):

Okay, for a LEGO angle, let me remind you of the great ATLAS detector built by Dr. Sascha Hehlhase of the Niels Bohr Institute that I previously blogged: